In woody plants, when the cork cambium begins to produce new tissues to increase the girth of the stem or root the epidermis is sloughed off and replaced by a periderm. The periderm is made of semi-rectangular and boxlike cork cells. This will be the outermost layer of bark. These cells are dead at maturity. However, before the cells die, the protoplasm secretes a fatty substance called suberin into the cell walls. Suberin makes the cork cells waterproof and aids in protecting tissues beneath the bark. There are parts of the cork cambium that produce pockets of loosely packed cork cells. These cork cells do not have suberin embedded in their cell walls. These loose areas are extended through the surface of the periderm and are called lenticels. Lenticels function in gas exchange between the air and the stem interior. At the bottom of the deep fissures in tree bark are the lenticels.
Category: 4. Complex Tissues
http://learnhtml.foobrdigital.com/wp-content/uploads/2022/07/istockphoto-1257379675-612×612-1.jpg
Epidermis
The epidermis is also a complex plant tissue, and an interesting one at that. Officially, the epidermis is the outermost layer of cells on all plant organs (roots, stems, leaves). The epidermis is in direct contact with the environment and therefore is subject to environmental conditions and constraints. Generally, the epidermis is one cell layer thick, however there are exceptions such as tropical plants where the layer may be several cells thick and thus acts as a sponge.
Cutin, a fatty substance secreted by most epidermal cells, forms a waxy protective layer called the cuticle. The thickness of the cuticle is one of the main determiners of how much water is lost by evaporation. Additionally, at no extra charge, the cuticle provides some resistance to bacteria and other disease organisms. Some plants, such as the wax palm, produce enough cuticle to have commercial value: carnauba wax. Other wax products are used as polishes, candles, and even phonographic records. Epidermal cells are important for increasing the absorptive surface area in root hairs. Root hairs are essentially tubular extensions of the main root body composed entirely of epidermal cells. Leaves are not left out. They have many small pores called stomata that are surrounded by pairs of specialized epidermal cells called guard cells. Guard cells are unique epidermal cells because they are of a different shape and contain chloroplasts. There are other modified epidermal cells that may be glands or hairs that repel insects or reduce water loss.
Phloem
Phloem is an equally important plant tissue as it also is part of the ‘plumbing’ of a plant. Primarily, phloem carries dissolved food substances throughout the plant. This conduction system is composed of sieve-tube member and companion cells, that are without secondary walls. The parent cells of the vascular cambium produce both xylem and phloem.
This usually also includes fibers, parenchyma, and ray cells. Sieve tubes are formed from sieve-tube members laid end to end. The end walls, unlike vessel members in xylem, do not have openings. The end walls, however, are full of small pores where cytoplasm extends from cell to cell. These porous connections are called sieve plates. In spite of the fact that their cytoplasm is actively involved in the conduction of food materials, sieve-tube members do not have nuclei at maturity. It is the companion cells that are nestled between sieve-tube members that function in some manner bringing about the conduction of food. Sieve-tube members that are alive contain a polymer called callose. Callose stays in solution as long as the cell contents are under pressure. As a repair mechanism, if an insect injures a cell and the pressure drops, the callose will precipitate. However, the callose and a phloem protein will be moved through the nearest sieve plate where they will for a plug. This prevents further leakage of sieve tube contents and the injury is not necessarily fatal to overall plant turgor pressure.
Xylem
Xylem is an important plant tissue as it is part of the ‘plumbing’ of a plant. Think of bundles of pipes running along the main axis of stems and roots. It carries water and dissolved substances throughout and consists of a combination of parenchyma cells, fibers, vessels, tracheids, and ray cells. Long tubes made up of individual cells are the vessels, while vessel members are open at each end. Internally, there may be bars of wall material extending across the open space. These cells are joined end to end to form long tubes.
Vessel members and tracheids are dead at maturity. Tracheids have thick secondary cell walls and are tapered at the ends. They do not have end openings such as the vessels. The tracheids ends overlap with each other, with pairs of pits present. The pit pairs allow water to pass from cell to cell. While most conduction in the xylem is up and down, there is some side-to-side or lateral conduction via rays. Rays are horizontal rows of long-living parenchyma cells that arise out of the vascular cambium. In trees, and other woody plants, ray will radiate out from the center of stems and roots and in cross-section will look like the spokes of a wheel.

Complex Tissues
Tissues composed of more than one cell type are generically referred to as complex tissues. Xylem and phloem are the two most important complex tissues in a plant, as their primary functions include the transport of water, ions, and soluble food substances throughout the plant. While some complex tissues are produced by apical meristems, most in woody plants are produced by the vascular cambium and is often referenced as vascular tissue. Other complex tissues include the epidermis and the periderm. The epidermis consists primarily of parenchyma-like cells and forms a protective covering for all plant organs. The epidermis includes specialized cells that allow for the movement of water and gases in and out of the plant, secretory glands, various hairs, cells in which crystals are accumulated and isolated, and other cells that increase absorption in the roots. The periderm is mostly cork cells and therefore forms the outer bark of woody plants. It is considered to be a complex tissue because of the pockets of parenchyma cells scattered throughout.
