Categories
6. Cell Division

Cell division

Mitosis and cytokinesis

In eukaryotes the processes of DNA replication and cell division occur at different times of the cell division cycle. During cell division, DNA condenses to form short, tightly coiled, rodlike chromosomes. Each chromosome then splits longitudinally, forming two identical chromatids. Each pair of chromatids is divided between the two daughter cells during mitosis, or division of the nucleus, a process in which the chromosomes are propelled by attachment to a bundle of microtubules called the mitotic spindle.

Mitosis can be divided into five phases. In prophase the mitotic spindle forms and the chromosomes condense. In prometaphase the nuclear envelope breaks down (in many but not all eukaryotes) and the chromosomes attach to the mitotic spindle. Both chromatids of each chromosome attach to the spindle at a specialized chromosomal region called the kinetochore. In metaphase the condensed chromosomes align in a plane across the equator of the mitotic spindle. Anaphase follows as the separated chromatids move abruptly toward opposite spindle poles. Finally, in telophase a new nuclear envelope forms around each set of unraveling chromatids.

An essential feature of mitosis is the attachment of the chromatids to opposite poles of the mitotic spindle. This ensures that each of the daughter cells will receive a complete set of chromosomes. The mitotic spindle is composed of microtubules, each of which is a tubular assembly of molecules of the protein tubulin (see above The cytoskeleton). Some microtubules extend from one spindle pole to the other, while a second class extends from one spindle pole to a chromatid. Microtubules can grow or shrink by the addition or removal of tubulin molecules. The shortening of spindle microtubules at anaphase propels attached chromatids to the spindle poles, where they unravel to form new nuclei.

The two poles of the mitotic spindle are occupied by centrosomes, which organize the microtubule arrays. In animal cells each centrosome contains a pair of cylindrical centrioles, which are themselves composed of complex arrays of microtubules. Centrioles duplicate at a precise time in the cell division cycle, usually close to the start of DNA replication.

After mitosis comes cytokinesis, the division of the cytoplasm. This is another process in which animal and plant cells differ. In animal cells cytokinesis is achieved through the constriction of the cell by a ring of contractile microfilaments consisting of actin and myosin, the proteins involved in muscle contraction and other forms of cell movement. In plant cells the cytoplasm is divided by the formation of a new cell wall, called the cell plate, between the two daughter cells. The cell plate arises from small Golgi-derived vesicles that coalesce in a plane across the equator of the late telophase spindle to form a disk-shaped structure. In this process, each vesicle contributes its membrane to the forming cell membranes and its matrix contents to the forming cell wall. A second set of vesicles extends the edge of the cell plate until it reaches and fuses with the sides of the parent cell, thereby completely separating the two new daughter cells. At this point, cellulose synthesis commences, and the cell plate becomes a primary cell wall

Leave a Reply

Your email address will not be published. Required fields are marked *