Total oxidation of the relatively few products of phase II occurs in a cyclic sequence of chemical reactions known as the tricarboxylic acid (TCA) cycle, or the Krebs cycle, after its discoverer, Sir Hans Krebs; it represents phase III of energy release from foods. Each turn of this cycle (see below The tricarboxylic acid [TCA] cycle) is initiated by the formation of citrate, with six carbon atoms, from oxaloacetate (with four carbons) and acetyl coenzyme A; subsequent reactions result in the reformation of oxaloacetate and the formation of two molecules of carbon dioxide. The carbon atoms that go into the formation of carbon dioxide are no longer available to the cell.
The concomitant stepwise oxidations—in which hydrogen atoms or electrons are removed from intermediate compounds formed during the cycle and, via a system of carriers, are transferred ultimately to oxygen to form water—are quantitatively the most important means of generating ATP from ADP and inorganic phosphate. These events are known as terminal respiration and oxidative phosphorylation (see below Biological energy transduction).
Some microorganisms, incapable of completely converting their carbon compounds to carbon dioxide, release energy by fermentation reactions, in which the intermediate compounds of catabolic routes either directly or indirectly accept or donate hydrogen atoms.
Such secondary changes in intermediate compounds result in considerably less energy being made available to the cell than occurs with the pathways that are linked to oxidative phosphorylation; however, fermentation reactions yield a large variety of commercially important products. Thus, for example, if the oxidation (removal of electrons or hydrogen atoms) of some catabolic intermediate is coupled to the reduction of pyruvate or of acetaldehyde derived from pyruvate, the products formed are lactic acid and ethyl alcohol, respectively.