In the quantum mechanical version of the Bohr atomic model, each of the allowed electron orbits is assigned a quantum number n that runs from 1 (for the orbit closest to the nucleus) to infinity (for orbits very far from the nucleus). All of the orbitals that have the same value of n make up a shell. Inside each shell there may be subshells corresponding to different rates of rotation and orientation of orbitals and the spin directions of the electrons. In general, the farther away from the nucleus a shell is, the more subshells it will have. See the table.

This arrangement of possible orbitals explains a great deal about the chemical properties of different atoms. The easiest way to see this is to imagine building up complex atoms by starting with hydrogen and adding one proton and one electron (along with the appropriate number of neutrons) at a time. In hydrogen the lowest-energy orbit—called the ground state—corresponds to the electron located in the shell closest to the nucleus. There are two possible states for an electron in this shell, corresponding to a clockwise spin and a counterclockwise spin (or, in the jargon of physicists, spin up and spin down).
The next most-complex atom is helium, which has two protons in its nucleus and two orbiting electrons. These electrons fill the two available states in the lowest shell, producing what is called a filled shell. The next atom is lithium, with three electrons. Because the closest shell is filled, the third electron goes into the next higher shell. This shell has spaces for eight electrons, so that it takes an atom with 10 electrons (neon) to fill the first two levels. The next atom after neon, sodium, has 11 electrons, so that one electron goes into the next highest shell.
In the progression thus far, three atoms—hydrogen, lithium, and sodium—have one electron in the outermost shell. As stated above, it is these outermost electrons that determine the chemical properties of an atom. Therefore, these three elements should have similar properties, as indeed they do. For this reason, they appear in the same column of the periodic table of the elements (see periodic law), and the same principle determines the position of every element in that table. The outermost shell of electrons—called the valence shell—determines the chemical behaviour of an atom, and the number of electrons in this shell depends on how many are left over after all the interior shells are filled.
