3. Plants Evolution

Evolution of land plants from the Ordovician Period through the middle Devonian

Botanists now believe that plants evolved from the algae; the development of the plant kingdom may have resulted from evolutionary changes that occurred when photosynthetic multicellular organisms invaded the continents. The earliest fossil evidence for land plants consists of isolated spores, tracheid-like tubes, and sheets of cells found in Ordovician rocks.

The abundance and diversity of these fossils increase into the Silurian Period (about 443.8 million to 419.2 million years ago), where the first macroscopic (megafossil) evidence for land plants has been found. These megafossils consist of slender forking axes that are only a few centimetres long. Some of the axes terminate in sporangia that bear trilete spores (i.e., spores that divide meiotically to form a tetrad). Because a trilete mark indicates that the spores are the product of meiosis, the fertile axes may be interpreted as the sporophyte phase of the life cycle.

Lepidodendron Fossil fragment of LepidodendronLouise K. Broman—Root

Fossils of this type could represent either vascular plants or bryophytes. Another possibility is that they are neither but include ancestors of vascular plants, bryophytes, or both. The earliest fossils also include at least one or more additional plant groups that became extinct early in the colonization of the land and therefore have no living descendants.

By the early Devonian Period (about 419.2 million to 393.3 million years ago), some of the fossils that consist of forking axes with terminal sporangia also produced a central strand of tracheids, the specialized water-conducting cells of the xylem. Tracheids are a diagnostic feature of vascular plants and are the basis for the division name, Tracheophyta.

The simplest and presumably most primitive vascular plants from the late Silurian and early Devonian periods (about 419.2 million to 393.3 million years ago) were the Rhyniopsida. They included plants such as Cooksonia and Rhynia, which were herbaceous colonizers of moist habitats. Most were less than 30 cm (12 inches) tall. The plant body was not differentiated into stems, leaves, and roots; rather, the forking aboveground axes bore terminal sporangia and produced stomata, which demonstrate that the plants were green and photosynthetic.

Surface or underground axes served to root the plant and were anchored by rhizoids. Because such plants produced only one type of spore, they were nonseed plants with a homosporous life cycle and free-living gametophytes. A small number of such gametophytes have been described from Devonian deposits.

Some plants of the early Devonian had multicellular emergences of tissue along their aboveground axes, which are thought to have increased the light-capturing surface of the photosynthetic tissue. Such emergences (enations) gave rise to the leaves (microphylls) of the Lycopsida, thus producing an aboveground shoot system that consisted of branching stems with leaves. Underground axes that lacked leaves would have become the roots. Lycophytes were the first plants with well-differentiated shoot systems, and they are the most ancient groups of vascular plants with living representatives.

The leaves of several other plant groups were derived from modifications of the forking axes. There was a variety in structure among Devonian plants. The axes of some plants forked equally, whereas other plants—e.g., Drepanophycus—were more specialized, comprising a large centrally located axis as well as smaller axes borne laterally. In plants where the lateral systems branched in only one plane, the side branches were flat like leaves. Filling in (webbing) of the spaces between forks of the laterals with photosynthetic tissue produced leaves called megaphylls.

There is evidence for the evolution of megaphylls in several plant groups of the late Devonian Period (about 382.7 million to 358.9 million years ago) and early Carboniferous Period (about 358.9 million to 323.2 million years ago). Although most of these groups have no living representatives, by the Carboniferous Period they had given rise to homosporous ferns, sphenopsids (horsetails), and seed plants (gymnosperms).

seed fern
seed fern Neuropteris ovata Hoffmann, a fossilized seed fern dating from the late Carboniferous Period of northeastern Ohio.Mark A. Wilson (Department of Geology, The College of Wooster).

As Devonian plants with microphylls and those with specialized branching systems diversified, many grew to the size of shrubs. By the middle Devonian Period (about 393.3 million to 382.7 million years ago), there were shrub-size representatives of several lineages, but a further increase in the size of herbaceous plants was restricted by the limited diameter that aboveground stems and rooting systems could achieve. The development of lateral (secondary) growth overcame this size restriction. The ability to produce secondary growth evolved independently in several groups.

In the lycophytes, much of this secondary growth occurred in cortical tissues; in the ancestors of seed plants and several other lineages, however, the production of wood accounted for most of the growth in stem diameter. About the same time, downward-growing central rooting systems evolved independently in lycophytes and other plant groups. As a result, there were forests with a canopy of giant lycophyte and gymnosperm trees near the beginning of the Carboniferous Period.

As plants developed more complex growth forms, they also underwent systematic diversification and evolved more specialized modes of sexual reproduction. The most primitive vascular plants had a homosporous life cycle, in which reproduction and dispersal involved a single type of spore. Extant homosporous plants include most ferns and many lycophytes.

The homosporous life cycle is an effective means for long-distance dispersal of species. Although it permits the fertilization of an egg by a sperm from the same gametophyte plant, genetic recombination, considered important for more rapid evolution, is not possible. Moreover, because the gametophytes of homosporous plants are exposed to the environment for an extended period of time, mortality is relatively high.

By the middle Devonian Period, the heterosporous life cycle had evolved independently in several groups, including lycophytes and the ancestors of seed plants. In heterosporous plants, there are two sizes of spores; the smaller (a microspore) produces a male gametophyte, and the larger (a megaspore) produces a female gametophyte.

The incidence of genetic recombination is increased by this obligate cross-fertilization. Both types of gametophytes develop quickly within the protective spore wall. Compared with homosporous plants, reproduction is more rapid and mortality is reduced in heterosporous plants. By the end of the Devonian, heterosporous plants had become the dominant species in most wetland environments; however, the need for an abundant source of water from the environment to allow fertilization prevented the heterosporous plants from establishing communities in drier habitats.

Leave a Reply

Your email address will not be published. Required fields are marked *