The interpretation of quarks as actual physical entities initially posed two major problems. First, quarks had to have half-integer spin (intrinsic angular momentum) values for the model to work, but at the same time they seemed to violate the Pauli exclusion principle, which governs the behaviour of all particles (called fermions) having odd half-integer spin. In many of the baryon configurations constructed of quarks, sometimes two or even three identical quarks had to be set in the same quantum state—an arrangement prohibited by the exclusion principle. Second, quarks appeared to defy being freed from the particles they made up. Although the forces binding quarks were strong, it seemed improbable that they were powerful enough to withstand bombardment by high-energy particle beams from accelerators.
These problems were resolved by the introduction of the concept of colour, as formulated in quantum chromodynamics (QCD). In this theory of strong interactions, whose breakthrough ideas were published in 1973, colour has nothing to do with the colours of the everyday world but rather represents a property of quarks that is the source of the strong force. The colours red, green, and blue are ascribed to quarks, and their opposites, antired, antigreen, and antiblue, are ascribed to antiquarks. According to QCD, all combinations of quarks must contain mixtures of these imaginary colours that cancel out one another, with the resulting particle having no net colour. A baryon, for example, always consists of a combination of one red, one green, and one blue quark and so never violates the exclusion principle. The property of colour in the strong force plays a role analogous to that of electric charge in the electromagnetic force, and just as charge implies the exchange of photons between charged particles, so does colour involve the exchange of massless particles called gluons among quarks. Just as photons carry electromagnetic force, gluons transmit the forces that bind quarks together. Quarks change their colour as they emit and absorb gluons, and the exchange of gluons maintains proper quark colour distribution.