Linear regression is a way to model the relationship between two variables. You might also recognize the equation as the slope formula. The equation has the form Y= a + bX, where Y is the dependent variable (that’s the variable that goes on the Y axis), X is the independent variable (i.e. it is plotted on the X axis), b is the slope of the line and a is the y-intercept.
The first step in finding a linear regression equation is to determine if there is a relationship between the two variables. This is often a judgment call for the researcher. You’ll also need a list of your data in x-y format (i.e. two columns of data—independent and dependent variables).

Warnings:
- Just because two variables are related, it does not mean that one causes the other. For example, although there is a relationship between high GRE scores and better performance in grad school, it doesn’t mean that high GRE scores cause good grad school performance.
- If you attempt to try and find a linear regression equation for a set of data (especially through an automated program like Excel or a TI-83), you will find one, but it does not necessarily mean the equation is a good fit for your data. One technique is to make a scatter plot first, to see if the data roughly fits a line before you try to find a linear regression equation.