Water itself is a complicated and unique molecule. Even if the pressure is consistent, water’s density will change based on the temperature. Recall that the three basic forms of matter are solid, liquid and gas (ignore plasma for the time being). As a rule of thumb, almost all materials are more dense in their solid or crystalline form than in their liquid form; place the solid form of almost any material on the surface of its liquid form, and it will sink. Water, on the other hand, does something very special: ice (the solid form of water) floats on liquid water.
Look carefully at the relationship between water’s temperature and its density. Beginning at 100 °C, the density of water steadily increases, as far as 4 °C. At that point, the density trend reverses. At 0 °C, water freezes to ice and floats.
This table lists the densities of water at different temperatures and constant pressure.
The density of water at constant pressure | |
---|---|
Temp (ºC) | Density (kg/m3) |
100 | 958.4 |
80 | 971.8 |
60 | 983.2 |
40 | 992.2 |
30 | 995.6502 |
25 | 997.0479 |
22 | 997.7735 |
20 | 998.2071 |
15 | 999.1026 |
10 | 999.7026 |
4 | 999.9720 |
0 | 999.8395 |
−10 | 998.117 |
−20 | 993.547 |
−30 | 983.854 |
The values below 0ºC refer to super cooled water |
The implications of this simple fact are enormous: when a lake freezes, ice crusts at the surface and insulates the liquid below from freezing, while at the same time allowing the colder water (with a temp of approx. 4 °C and a high density) to sink to the bottom. If ice did not float, it would sink to the bottom, allowing more ice to form and sink, until the lake froze solid! Scuba divers and swimmers often encounter these water temperature gradients, and they might even encounter a water layer at the very bottom of a lake with a temperature of approximately 4 °C. That’s just about as cold as the lake will get at the bottom; as soon as the water gets colder, the liquid water becomes less dense and rises.

Layers of water in a winter lake: During the winter months of seasonal climates, the warmest water in most lakes and rivers is only 4°C. This 4°C water has the highest density and sinks to the bottom of the lake. As the water becomes colder (<4°C), it becomes less dense and rises to form ice on the surface of the lake. As a result, liquid water always exists in lakes and rivers during the winter months. This unique property of water enables animals and plants to survive under the frozen lake or winter, ensuring that all freshwater life does not go extinct each winter.