There are several types of magnifiers available. The choice of an optical design for a magnifier depends upon the required power and the intended application of the magnifier.
For low powers, about 2–10×, a simple double convex lens is applicable. (Early simple microscopes such as Leeuwenhoek’s magnified up to 300×.) The image can be improved if the lens has specific aspheric surfaces, as can be easily obtained in a plastic molded lens. A reduction of distortion is noted when an aspheric lens is used, and the manufacture of such low-power aspheric plastic magnifiers is a major industry. For higher powers of 10–50×, there are a number of forms for magnifiers in which the simple magnifier is replaced by a compound lens made up of several lenses mounted together.
A direct improvement in the distortion that may be expected from a magnifier can be obtained by the use of two simple lenses, usually plano-convex (flat on one side, outward-curved on the other, with the curved surfaces facing each other). This type of magnifier is based upon the eyepiece of the Huygenian telescope, in which the lateral chromatic aberration is corrected by spacing the elements a focal length apart. Since the imaging properties are provided and shared by two components, the spherical aberration and the distortion of the magnifier are greatly reduced over those of a simple lens of the same power.
A Coddington lens combines two lens elements into a single thick element, with a groove cut in the centre of the element to select the portion of the imaging light with the lowest aberrations. This was a simple and inexpensive design but suffers from the requirement that the working distance of the magnifier be very short.
More-complex magnifiers, such as the Steinheil or Hastings forms, use three or more elements to achieve better correction for chromatic aberrations and distortion. In general, a better approach is the use of aspheric surfaces and fewer elements.
Mirrors are also used. Reflecting microscopes, in which the image is magnified through concave mirrors rather than convex lenses, were brought to their peak of perfection in 1947 by British physicist C.R. Burch, who made a series of giant instruments that used ultraviolet rays. There is no chromatic aberration using a reflector, and distortion and spherical aberration are controlled through the introduction of a carefully contoured aspheric magnifying mirror. Present-day reflecting microscopes are confined to analytical instruments using infrared rays.